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Primary Gamma Rays

C. E. Fichtel

ABSTRACT

Within our galaxy, cosmic rays can reveal their presence in inter-

stellar space and probably in source regions by their interactions with

interstellar matter which lead to 7 rays with a very characteristic

energy spectrum. From the study of the intensity of the high energy

gamma radiation as a function of galactic longitude, it is already

clear that cosmic rays are almost certainly not uniformly distributed

in the galaxy and are not concentrated in the center of the galaxy.

The galactic cosmic rays appear to be tied to galactic structural

features, presumably by the galactic magnetic fields which are in turn

held by the matter in the arm segments and the clouds. On the extra-

galactic scale, it is now possible to say that cosmic rays are not

universal at the density seen near the earth. The diffuse celestial

gamma ray spectrum that is observed presents the interesting possibility

of cosmological studies and possible evidence for a residual universal

cosmic ray density, which is much lower than the present galactic

cosmic ray density.

I. INTRODUCTION

Gamma ray astronomy is emerging as another rewarding avenue of

astronomical research into the nature of our galaxy. As has been



recognized for some time, cosmic rays in the galaxy interact with the

interstellar matter leading to high energy gamma rays mostly arising

from o mesons formed in the interactions. The high energy gamma

radiation formed in this way is distinguishable by its unique energy

spectrum which has a maximum intensity at 70 MeV. Further, the inten-

sity of the radiation from the galactic plane (Kraushaar et al., 1972

and Kniffen et al., 1973), is great enough so that it stands out clearly

from the diffuse background, which also has a very different energy

spectrum (Fichtel et al., 1973). Thus, gamma ray astronomy can provide

information on the product of the galactic cosmic ray intensity and

the interstellar matter.

Another only slightly older field of astronomy, namely radio

astronomy, has provided considerable insight into the distribution of

matter, and especially atomic hydrogen in the galaxy through the study

of the 21 cm line. Together with radio and other related data, gamma

ray astronomy can then ultimately provide a picture of the distribution

of cosmic rays in the galaxy both on a broad scale, within arm segments

and clouds, and around sources of cosmic rays, as well as helping to

define the principal galactic features. At present, gamma ray astronomy

is in its earliest stages of development, but already some galactic

features are becoming apparent.

In this paper, after a short summary of the general considerations

related to the production of gamma rays by galactic cosmic rays and the

present experimental results, the specific galactic models currently

being proposed to explain the galactic radiation are discussed to
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understand what is presently known and what future gamma ray observa-

tion could be expected to reveal.

Beyond the galaxy, gamma ray astronomy may be providing informa-

tion on cosmic rays in the intergalactic region, although the inter-

pretation of the diffuse gamma radiation observed by OSO-III (Kraushaar

et al., 1972) and SAS-II (Fichtel et al., 1973) is ambiguous and will

remain so until much more detailed information is available on the

spatial distribution to test the uniformity, and the precise energy

spectrum is measured. Nonetheless, the present data on this diffuse

celestial radiation arestrongly suggestive that the gamma radiation

may provide insight into cosmology and possible ancient cosmic rays

in the Universe. Regardless of the ultimate resolution of that .

problem, the diffuse radiation deserves attention here because the

observed level sets an upper limit on the product of the cosmic ray

density and the intergalactic matter density at the present time.

II. COSMIC RAYS AND GALACTIC GAMMA RADIATION

A. General

The number and energy spectrum of the gamma rays produced by

cosmic rays interacting with interstellar matter has been calculated

in detail for the case of the cosmic radiation in intergalactic space

by several authors (e.g. Stecker, 1970; Cavallo and Gould, 1971). The

flux of gamma rays with energies greater than E at. a distance r is

given by the expression

= -j' SKg(r,d) n(r,dn) drd (1)
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where S is the number of gamma rays produced on the average for one

interstellar nucleus/sec. and a cosmic ray energy density and spectrum

equal to that near the earth, n is the intergalactic proton density,

g has been introduced here to represent the ratio of the cosmic ray

density to that in the vicinity of the solar system, and K (assumed

here to be 1.5) has been introduced to account for the molecular

hydrogen density. Following Stecker (1973) S is taken to be

1.5 10-2 sec.

It is worth mentioning at this point that the principal contribu-

tion to the high energy gamma radiation from the cosmic ray interactions

with interstellar matter comes in the cosmic ray energy range from a

few-tenths of a BeV to a few tens of BeV. Below that energy range

the parent O mesons are not produced, and at higher energies the

contribution is very small because the cosmic ray energy spectrum is

decreasing much faster with energy (-E-5/2) than the pion production

is increasing (~E1/4). Hence, when cosmic rays are mentioned here,

the energy range mentioned above is implied.

B. Present Gamma Ray Experimental Picture

High energy gamma radiation was first seen to be arriving from

the galactic plane by Kraushaar et al. (1972) with the OSO-III experi-

ment. More recently, the results from the SAS-II gamma ray telescope,

which are currently being analyzed, are providing information of im-

proved angular accuracy and statistical weight (Kniffen et al., 1973).

For background information a short description of the SAS-II experi-
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ment will be given in the next paragraph before presenting the experi-

mental results.

A schematic diagram of the gamma ray telescope flown on SAS-II is

shown in Fig. 1. The spark chamber assembly consists of 16 spark

chamber modules above a set of four central plastic scintillators and

another 16 modules below these scintillators. Thin tungsten plates,

averaging 0.03 radiation lengths thick, are interleaved between the

spark chamber modules, which have an active area of approximately

640 cm2 . The large number of thin tungsten plates and spark chambers

serve a dual purpose, first to provide material for the gamma ray to

be converted into an electron pair which can then be clearly identified

and from which the arrival direction of the gamma ray can be determined,

and, secondly, to provide a means of determining the energy of the

electrons in the pair by measuring the Coulomb scattering. The energy

threshold is about 30 MeV. The energy of the gamma-ray can be measured

up to about 200 MeV, and the integral flux above 200 MeV can be determined.

A more complete discussion of the SAS-II gamma ray telescope is given

by Derdeyn et al. (1972). The calibration and data analysis are similar

to that used for previous balloon gamma ray digitized spark chambers

(Fichtel et al., 1969; Kniffen, 1969; Fichtel et al., 1972; and Thompson,

1973). The SAS-II satellite is capable of being pointed in any direction,

and normally viewed the same region of the sky for a period of about a

week. The orbit is nearly equatorial at an altitude ranging from about

440 km to 610 km.



Relative to the general background celestial diffuse radiation,

an enhanced flux of high energy (> 30 MeV) gamma rays is observed along

the entire galactic plane. The region (3200 < 11I < 40') is par-

ticularly intense, as seen in Fig. 2, which shows the intensity of

gamma rays above 100 MeV summed from b
1I = -100 to bI I = +100 and

plotted as a function of galactic longitude (Kniffen et al., 1973).

Notice specifically that the radiation from the galactic center is

not more intense than the rest of the interval of about 600 in II

around the galactic center. This lack of a peak in the gamma ray

distribution at the center negates any theory which tries to explain

the general enhancement in the region (3200 < III < 400) in terms of

a strong source reaching a maximum in the galactic center region.

Summing the radiation for E > 100 MeV into bins with a width in

bII of 2.50 in the region (330 ° < II < 300), the distribution in

Fig. 3 is obtained. The one a half-width is 4.50. With the current

uncertainties in the knowledge of the pointing direction, and the

known accuracy for determining the arrival directions of the individual

gamma rays, a pure line source would be broadened to have a a of 3.5

+0.50. Hence, the uncertainty of angular resolution in the preliminary

data is still a significant factor in the angular distributions. How-

ever, from the above results, it can be concluded that the 2 a line

width is probably not more than about 60 on the average for the 600

interval (3300 < III < 300).

The energy spectrum for the gamma radiation in the region (300 <

II < 30', -100 < b I I < 100.) is shown in Fig. 4. Notice that the



energy spectrum is quite flat, especially as compared to the very steep

energy spectrum of the diffuse radiation (Fichtel, et al., 1973). If

it is assumed that the diffuse radiation pervades the galactic plane

region also, then the contribution from the galactic plane alone is

obtained by subtracting the diffuse spectrum from the total. This

result is shown as the dashed line in Fig. 4. It is seen that, whereas

there is almost no effect on the spectrum above 100 MeV, the contri-

bution of the diffuse background at about 40 MeV is quite significant.

The integral flux above 100 MeV is (1.1 + .3) x 10- 4 photons/(cm2 sterad.

sec), where the errors include uncertainties due to the fact that the

analysis of the calibration data is not yet complete. Within present

uncertainties, the energy spectrum is consistent with a cosmic-ray inter-

stellar matter interaction 7r -decay spectrum, or a mixture of this

spectrum and a spectrum formed by Compton radiation from cosmic-ray

electrons. The intensity of the radiation in the anticenter direction

is much lower, averaging about 0.2-10- 4 photons/(cm 2 radian sec.).

An enhancement relative to the plane flux in the surrounding region

is seen in the interval 2600<911<2700 (Thompson, et al., 1974). This

enhancement is centered around b = -3 (+1)0 rather than bI I = 00.

The excess has a hard spectrum, similar within statistics to that of

the galactic plane itself. Possible explanations of this specific

feature will be discussed after a discussion of some of the current

models to explain the galactic radiation.

C. Galactic Cosmic Ray - Matter Models

In the first attempts to compare the observed high-energy gamma-

ray intensity with calculated values, it was assumed (e.g., Kraushaar,
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et al., 1972) that the cosmic-ray density was uniform throughout the

galaxy so that g could be taken outside the integral in Eq. (1), and

was usually set equal to one. Using the 21-cm data to estimate

columnar hydrogen density (Kraushaar, et al., 1972) showed that whereas

the calculated intensity was fairly close to that expected in the

anticenter direction when the expected intensity was integrated over

the solid angle of the detector (which had a gaussian angular sensitivity

with a la of about 150), the observed intensity in the galactic center

region was about four times the calculated value. Thus, the galactic

longitudinal dependence was clearly inconsistent with this model, and

it could, therefore, not be brought into agreement by assuming a uni-

formly higher value of the cosmic-ray density or by assuming that the

total matter density was uniformly much higher because a significant

portion of the interstellar hydrogen was in molecular form, for example.

More recently, Strong, et al. (1973), have assumed that the cosmic-

ray density has a smooth distribution, but one which increases towards

the galactic center according to the equation:

2 2 2  n
g - {Z exp[- ] exp(- 100) [1-exp(- --)][1+4 cos (O-O(R))]} (2)

In this relation Z is the height above the galactic plane, Zo = 175 pc

and R = distance to galactic center in kpc. The choice of this form

was based on this expression representing the mean magnetic field (n=l)

or the square of the mean magnetic field (n=2), in accordance with the

work of Thielheim, et al. (1971). The results were in better agreement

with the center anticenter ratio, but do not agree in detail with more

recent SAS-II results. This work, however, is important as one of the
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papers breaking with the traditional constant density cosmic-ray con-

cept.

Stecker, et al. (1974), have proposed that the galactic cosmic-

ray flux varies with the radial distance from the galactic center and

is about an order of magnitude higher than the local value in a toroi-

dal region between 4 and 5 kpc. They further suggest that this en-

hancement can be plausibly accounted for by Fermi acceleration caused by

a hydrodynamic shock driven by the expanding gas in the "3 kpc" arm

and invoked in some versions of galactic structure theory. This

theory does provide a possible explanation of the general enhancement

in the central region as shown in Fig. 5, but possibly not some of the

fine details now beginning to appear. There is, of course, also the

question of whether or not the Fermi acceleration exists. If it does,

then, clearly, the accelerated cosmic-rays could play a very important

role.

In pursuing the problem of galactic gamma radiation, it is impor-

tant to realize that the one-dimensional full-width angular resolution

of the high-energy gamma-ray detectors flown thus far has been either

several degrees, in the SAS-II, or about 250 in the case of OSO-III.

Thus, the observed intensity of a feature with a thickness comparable

to the disc of the galaxy will decrease approximately as one over the

distance once it is more than 2 kps away from SAS-II (and closer for

OSO-III), and faster if it is also small in extent within the plane.

Hence, more distant regions of the galaxy would have to be substantially

more intense than local ones to explain an observed intensity of gamma-

rays in any given direction with the present instruments. This con-
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sideration, together with the geometrical distribution of the intense

high-energy gamma radiation, particularly the broad, relatively flat

distribution of the gamma radiation in galactic longitude over 600

to 900 in the central region of the galaxy, suggested to Kniffen, et

al. (1973), and Bignami and Fichtel (1974), that the source of the

enhancement is possibly predominantly diffuse radiation from the spiral

arm segments closest to the sun in the direction of the galactic center.

Bignami and Fichtel (1974) have proceeded further and proposed that

in general the cosmic-rays are enhanced where the matter is greatest;

namely, in the arm segments and clouds. This hypothesis is supported

by the following considerations: First, it is assumed that the cosmic-

rays and magnetic fields are galactic and not universal. Then, as

shown by Bierman and Davis (1960) and Parker (1966) in more detail, a

magnetic field can only be contained by the weight of the gas through

which it penetrates; and, hence, it is tied to the matter. The magnetic

field lines then have their greatest density where the matter density

is greatest, and tend to diverge in less dense regions. This picture

is supported by the synchrotron emission measurements from M51 by

Mathewson, et al. (1971), at Westerbroc, as well as by the density wave

theory, as applied to the spiral arm structure by Roberts and Yuan (1970).

The galactic cosmic-rays are primarily contained by the magnetic

fields; and, indeed, their energy density cannot substantially exceed

that of the magnetic fields, or the cosmic-ray pressure will push a

bulge into the fields ultimately allowing the cosmic-rays to escape.

The local energy density of the cosmic-rays is about 1/3 eV/cm3 , which

is also approximately the estimated energy density of the average mag-



netic field. This feature suggests that the magnetic fields are nearly

saturated with cosmic-rays and that the cosmic-ray density may generally

approach the limit the magnetic fields can contain. This concept is

given some theoretical support by the expected slow diffusion rate of

cosmic-rays in the magnetic fields of the galaxy and the very possibly

high .production rate of cosmic-rays, which togetter also suggest that

in general the cosmic rays should be plentiful in a given region and

should not move quickly to less dense regions. Therefore, it was

assumed that the energy density of the cosmic rays is at or near its

saturation value, and hence, higher, in general, where the matter is

denser and better able to contain the magnetic fields. As a trial

assumption, Bignami and Fichtel (1974) let the cosmic-ray density

be proportional to the matter density. The fluctuations in matter

density are then quite important in determining the expected gamma-

ray intensity calculated by Eq. (1), since the gamma radiation becomes

2
proportional to n2

The density distribution of interstellar matter has generally been

estimated from 21-cm radio data with corrections in the form of multi-

plying factors to include lesser amounts of ionized and molecular

hydrogen. Some problems associated with the direct interpretation of

the 21-cm data are discussed, for example, by Simonson (1970) in his

review of the "Spiral Workshop" held at the University of Maryland in

1970. First, there is clearly significant absorption of the 21-cm

line over a band in galacticlongitude about the galactic center, and

also there are indications of high optical depth along spiral arm

segments. Second, the interpretation of the observed intensity in the
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21-cm line in terms of density depends on the assumed galactic velocity

field, and there is increasing reason to believe the velocity pattern

is not as simple as assumed in the earliest models. It is actually

this latter problem which is of greater concern here, because it affects

the peak valley ratio of the matter density distribution.

It seems plausible, relying again both on measurements from ex-

ternal galaxies and on the density wave theory for the spiral pattern

(e.g., Roberts and Yuan, 1970), to assume at least for the inner galac-

tic arms that this ratio is five to one. In constructing the hydrogen

density distribution nh (J£I, bII,p) model, Bignami and Fichtel have made

the following assumptions: Between the Sun (at R = 10 kpc) and the

galactic center there are three main arms, the 4kpc dispersion ring,

the Norma Scutum, and the Sagittarius. The Sun itself is located on

the inner side of a "local" arm of lesser density than the three pre-

vious ones. Outside the local arm (R > 11 kpc) no well-defined feature

is placed, but rather a smooth decrease up to 16 kpc. Table 1 summarizes

the density values adopted on the equatorial plane as a function of

the galactocentric distance. The intervals in galactocentric distance

are based on those of Westerhout (1970), except for the introduction of

the 4 kpc dispersion ring. The densities for distances less than 10

kpc are adjusted to reflect the 5:1 arm to interarm ratio assumed here.

Table 1

Galactocentricdistance (kpc) 0-.7 .7-3.5 3.5-4.5 4.5-5 5.-6 6.-7.3 1.3-8.5

Equatorial
density (cm-3 2.0 .40 2.0 .40 2.0 .40 2.0density (cm )0
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Table 1 (continued):

Galactocentric 8.5-9.7 9.7-11 11.-12 12.-13.3 13.3-14.6 14.6-16

distance (kpc)

Equatorial .40 .60 .52 .38 .28 .14
density (cm )

For simplicity, a cylindrical symmetry was assumed so that the

equatorial distribution nH (R, 0) is invariant for galactocentric

longitude. This is equivalent to approximating the arm segments with

arcs of circles and may, of course, lead to small displacements in

the position of the maxima of emission.

The vertical hydrogen distribution, nH(z), is computed as a quasi-

gaussian decrease from the equatorial value as in Schmidt (1965). The

half-width-half maximum of the distribution is 100 pc up to the Sun's

radius, 150 pc up to 11 kpc and 200 outwards.

The result is then introduced in Eq. (1) to yield the gamma-ray

line flux. Figure 6 shows the available SAS-II data in 100 kII inter-

vals together with the computations, both integrated between +100 in

b II . 201 interval points are also shown for the model to present

the arm structure in more detail and to give an idea of what could be

seen with a gamma-ray telescope of better angular resolution and better

statistics. Also presented is the contribution from the Sagittarius

arm alone, and from the Sagittarius and the Norma-Scutum arm. Note

that, in the symmetry of the model, two small but significant peaks

are present at the intermediate longitudes of 900 and 2700. These

represent the contribution of our local arm and their longitude value

does suffer most from the circular approximation. Further, the inten-

sity depends very critically on the mass and cosmic-ray density.
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The experimental data shown in Fig. 2 show a peak in the region

between 2600 and 2700, which deserves special attention. First, to see

more clearly the significance of this peak, the intensity of gamma-

rays above 100 MeV is summarized in Table 2 in ten-degree intervals

along the plane and within a 7.50 interval on each side of the plane

(Thompson, et al., 1974). The large intensity in the interval (2600

<II <2700, -7.50<b II<0) is seen to be three times the level in surround-

ing intervals; hence, the intensity is 3.0 gamma-ray/(cm 2 sr sec),

slightly over seven standard deviations above the average level of

approximately .95 + .26. The intensities in the other regions given in

Table 2 are similar to those in the galactic plane anticenter direction

(Kniffen, et al., 1973).

Table 2

olI 2500 2600 2700 2800 2900

-7.50 bI I 0 °  .8 + .3 3.0 + .5 1.08 + .26 1.15 + .36

00 bI I 7.50 .5 + .3 .95 + .26 .83 + .23 1.04 + .35

It is possible to relate this enhancement to the large-scale

galactic structure in that region, especially in view of the "hat

brim" effect of the galactic plane at those longitudes wherein the

radiation tends to come from south of the galactic plane. Although

the Milky Way in the region k II2600-2700 has not been studied as

thoroughly as other regions, the 21-cm radio data does point to a

maximum of emission in that region (Kerr, et al., 1974; Hindman and

Kerr, 1970; Goniadski and Jech, 1970), resulting possibly from the super-

position of three arm segments as seen in Fig. 7 (Simonson, 1974).
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It should also be noted, however, that near the center of the region

of the gamma-ray excess lies the Vela X supernova remnant (centered at

a=130.5 0 and 6=45.0), which contains the second fastest pulsar known,

PSR 0833-45 (period %84.2 msec) at c=128.8
0 and 6= -45.00. The best

estimate of the center of the gamma-ray excess is a=129.5+10 and 6=

-(46+1)o. The Vela object has a complex non-thermal radio source

geometry (Milne, 1968), emits both soft and hard continuum X-rays

(Seward, et al., 1971; Bunner, 1971; Kellogg, et al., 1973), and has

been observed to have a pulsating hard X-ray component (Harnden, et al.,

1972; Harnden and Gorenstein, 1973), which, however, accounts for only

about 6% of the total radiation in the X-ray interval. An extrapola-

tion of the spectrum to the gamma-ray region lies well below the results

presented here, indicating that some new production mechanism would be

required.

Such a mechanism could be the 'O-producing interactions of the ex-

panding cosmic-ray cloud of the supernova remnant. This hypothesis

would be in agreement with the observed gamma-ray energy spectrum.

Assuming the excess gamma radiation to be due to cosmic rays associated

with the Vela supernova, assuming the supernova remnant to be 460 par-

secs away, and assuming the matter density to be about 1.5 protons/cm
3

3 1050 ergs of energy would be in the form of cosmic rays from this

supernova. This is a number in the energy range, 1049 to 1051 ergs,

needed if supernovae are to be the main source of galactic cosmic rays

and is also in the range preducted by Colgate (1968) for the supernova

hydrodynamic shock theory.

For the moment, the question of which explanation (the latter
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or a sum of contributions from cosmic-rays in one or several arm seg-

ments) accounts for most of the Vela excess must remain open, although

the distribution of gamma-rays seems to favor the more compact supernova

remnant explanation.

As the SAS-II data analysis proceeds further, some additional

features should become apparent; however, as the large, high-sensitivity

gamma-ray telescopes of the future examine the galaxy with finer angu-

lar resolution, the distribution of cosmic rays and matter in the arm

segments, and even the clouds will become apparent in detail. At that

time, the dynamic pressures imposed by the cosmic-ray gas should be

seen clearly, both as the cosmic-rays expand about their source and as

they apply pressure with the magnetic fields to the galactic features

in which they are being held.

III. EXTRAGALACTIC COSMIC-RAYS

High-energy gamma radiation can contribute to the study of extra-

galactic cosmic-rays in two ways; first, in setting constraints on cur-

rent theoretical models proposing that the cosmic-rays pervade a local

cluster or supercluster of galaxies at approximately the level observed in

our own galaxy, and, second, in speaking to cosmological models in-

volving ancient cosmic-rays. Again, the discussion will begin with the

current experimental situation.

The gamma-ray experiment on OSO-III of Kraushaar, et al. (1972),

first observed a finite, apparently constant diffuse flux for regions

of the sky which were far enough from the galactic plane that no por-

tion of the relative wide angle of the OSO-III detector (%350) overlapped

the galactic plane. An integral value of (3.0 + 0.9)-10-5/(cm2 sterad.
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sec.) was quoted for the intensity above 100 MeV, but essentially no

energy spectral information was obtained. SAS-II has now also observed

a finite, diffuse flux of gamma-rays with a steep energy spectrum in

the energy region from 35 to 200 MeV in several regions with b I I1  > 150

(Fichtel, et al., 1973). Representing the energy spectrum by a power

law of the form dJ/dE = AE-a over this energy range, a is found to be

2.7 0. 7' and the integral flux above 100 MeV is (2.8 0.9) x 10 - 5 photons/
-0.7' -0.7

(cm2 sterad. sec.) Combining this result with existing low-energy gamma-

ray data yields an energy spectrum which is not a simple power 
law in

energy, as in the X-ray region, but which demonstrates first an increase

and then a decrease in slope, as shown in Fig. 8.

If it is to be assumed that cosmic-rays pervade the entire universe,

a specific cosmological model must be selected before any conclusions

can be drawn. However, the relatively low intensity observed in the

100 to 170 MeV region can put constraints on the distance to which

cosmic rays at the density observed in the vicinity of the earth may

extend, as will be seen, since the limit is sufficiently close in

distance to avoid major cosmological effects. Using the gamma-ray mea-

surements mentioned in the last paragraph, and using the values K =

1.1, g = 1 and S = 1.5*10 , the limiting radius is about fifty mega-

parsecs for an interstellar density of 10- 5 /cm3 and five hundred mega-

parasecs for a density of 10-
6 /cm3 . Thus, a cosmic-ray density equal to

that near the earth cannot pervade the universe, but the possibility

that cosmic-rays at the local density exist throughout our local super-

cluster of galaxies cannot be eliminated. Future gamma-ray observations

at higher energies could further restrict this limit, unless, of course,

a T°-like spectrum is seen at these higher energies instead of the steep
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spectrum seen at 30 to approximately 170 MeV.

It is also instructive to consider the possible origin of the

diffuse radiation, since at least one explanation relates to primordial

cosmic-rays. First of all, there is the possibility that the diffuse

radiation is the sum of many weak discrete or extended sources of un-

known origin. Only future experimental results can clarify the pic-

ture with regard to that possibility. There are, however, at least

two other possibilities; one that the radiation comes from diffuse

electrons interacting with matter, photons, or magnetic fields, and the

other is that the gamma rays are of cosmological origin.

With regard to the diffuse electron possibility, bremsstrahlung

seems unlikely. In an energy region, 1 to 10 MeV, where an increased

slope would be expected due to an increasing rate of energy loss, the

opposite is observed. For both synchrotron and Compton radiation, the

observed photon spectrum would imply a similarly-shaped parent elec-

tron spectrum which would have even very much sharper spectral features.

Further, for all three cases, the intensity seems high to be consis-

tent with reasonable estimates of the interstellar parameters.

Of the pure gamma-ray cosmological hypotheses, there are three,

of which I am aware, that seem to be possible candidates. They are the

cosmic-ray-interstellar matter interaction model, the particle-antiparticle

annihilation in the baryon symmetry steady-state model, and the cosmic-ray-

blackbody interaction model. In all theories, the resulting gamma-ray

spectrum is red-shifted substantially by the expansion of the universe.

In an expanding model of the universe, the density of matter is
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much greater in the cosmological past than it is observed to be in the

present. bwever, since the gamma radiation produced in interactions of

cosmic-rays with matter in the distant past reaches us from large

distances, the energy of these photons is degraded by the cosmological

redshift caused by the expansion of the universe. One curve developed

by Stecker (1969) involving red-shifts up to about 100 is shown in

Fig. 8. The theoretical curve is seen to agree with experimental data

reasonably well. If the maximum red-shift is at least 50, as the data

implies, then the density of cosmic rays in intergalactic space is 10
- 4

of the local galactic value for an intergalactic matter density of

10-5/cm 3

An alternate attempt to explain the gamma radiation through red-

shifted gamma rays from 7r decay arises from the big bang theory of

cosmology with the principle of baryon-symmetry. Harrison (1967)

was one of the first to propose a model of this type. Omnes (1969),

following Gamow (1948), considered a big-bang model in which the uni-

verse is initially at a very high temperature and density, and then

shows that, if the universe is baryon-symmetric, a separation of matter

from anti-matter occurred at T > 30 MeV. The initial phase separation

of matter and anti-matter leads ultimately to regions of pure matter

and pure anti-matter of the size of galaxy clusters. Stecker, Morgan,

and Bredekamp (1971) have predicted the gamma ray spectrum which would

be expected from annihilation at the boundaries of such clusters from

the beginning of their existence to the present. This spectrum is very

similar (essentially indistinguishable) to the one in Fig. 8 in the

energy range for which data exists, and is not included in the figure
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for that reason. The final model involves cosmic ray interactions with

the early blackbody radiation; it will be discussed by Wolfendale (1974) at

this meeting.

IV. SUMMARY

As the previous sections have indicated, although celestial gamma-

ray research is just emerging as the newest branch of astronomy, it is

already providing results which are of considerable importance in the

study of the galaxy and the universe. Because of its close relationship

to cosmic-rays, its development should be of special interest to cosmic-

ray physicists. In Section II, it was seen that cosmic rays are almost

certainly not uniformly distributed in the galaxy and are not concentrated

in the center of the galaxy. The galactic cosmic-rays are more probably

tied to structural features by magnetic fields, which are in turn held

by the matter in the arm segments and clouds. However, the detailed

study of the dynamic influence of the cosmic rays in source regions and

the study of their diffusion in the galaxy will have to wait for a gamma-

ray telescope twenty times or more as sensitive as SAS-II and one with

somewhat better angular resolution even than SAS-II.

On an extragalactic scale, it.was seen in Section III, that it is

possible to say that the cosmic ray density seen near the earth is not

universal; at present it is not possible, on the basis of the diffuse

gamma-ray data, to exclude the possibility that the cosmic rays pervade

the local supercluster. However, the apparent non-uniform distribution

of cosmic-rays in the galaxy, if firmly established, would be a difficulty
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for this latter concept. The diffuse celestial gamma-ray spectrum

that is observed presents the interesting possibility of cosmological

studies and possible evidence for a residual universal cosmic-ray density,

which is much lower than the present galactic cosmic-rays. Again, a

future gamma-ray instrument of much larger sensitivity with modest

energy and angular resolution can answer many of these questions.
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FIGURE CAPTIONS

Fig. 1 - Schematic Diagram of the SAS-II Gamma-Ray Experiment (Derdeyn

et al., 1972)

Fig. 2 - Distribution of high-energy (> 100 MeV) gamma-rays along the

galactic plane. The data marked OSO-III is that of Kraushaar,

et al. (1972), and that marked SAS-II, of Kniffen, et al.

(1973), and Thompson, et al. (1974). The diffuse background

level is shown by a dashed line. It is higher in the case of

OSO-III than SAS-II because the OSO-III is summed from bll =

-150 to bll = +150 and the SAS-II data from b 1 1 = -10 to bl =

+10. The ordinate scale is approximately in units of 104 x

photons/cm radian sec.).

Fig. 3 - Distribution of high-energy (E > 100 MeV) gamma-rays summed

from 211 = 3300 to 211 = 300 as a function of bll. The OSO-III

data is that of Kraushaar et al. (1973). The dashed curve

through the SAS-II data (Kniffen et al., 1973) is a gaussian

distribution with a = 4.50. As indicated in the text, this

distribution still includes a substantial experimental angular

uncertainty, so the real distribution of gamma-rays is probably

somewhat narrower.

Fig. 4 - Energy spectrum for gamma-rays from the region (-100 < bll

< 100, 3300 < 11 < 300), as determined by SAS-II. The solid

curve is the best estimate of the total spectrum and the dashed

curve represents the contribution after the diffuse background

has been subtracted.



Figure Captions (continued)

Fig. 5 - Comparison of the longitudinal distribution of galactic

7-radiation observed on SAS-II with the distribution given

by the theoretical model of Stecker, et al. (1974).

Fig. 6 - Longitudinal distribution of galactic gamma-flux integrated

over +100 in bII. SAS-II points are given together with their

error bars. The thick line represents the model of Bignami

and Fichtel (1974) smoothed in 100 II intervals. The thin

line represents the model in 20 intervals. The dotted line

(----) gives the contribution of the Sagittarius and Norma-

Scutum arms and dash-dot (-.-.), the contribution of the

Sagittarius arm alone.

Fig. 7 - A smoothed spatial diagram of the locations of matter density

deduced from 21-cm HI line measurements, and the density-wave

theory by Simonson (1974)

Fig. 8 - Diffuse celestial radiation observed by several experiments

(the data marked SAS-II refers to Fichtel et al., 1973. Also

shown are the straight line extrapolation of the X-ray data

(solid line) and the curve predicted by the cosmic-ray-

intergalactic matter interaction cosmological model with

ZMAX = 100 (Stecker, 1969) discussed in the text (dashed line).
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